

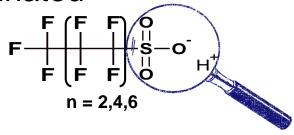
In-Situ Stabilization of PFAS Contaminated Soils at Two Superfund Sites

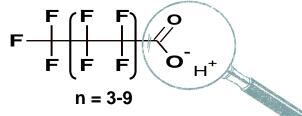
Diana Bless, U.S. EPA, ORD; John McKernan, Sc.D., CIH; Ed Barth, Ph.D., PE, CIH; Carolyn Acheson, Ph.D.; Marc Mills, Ph.D.; Mark Johnson, PhD; Chunming Su, PhD; Diana Cutt; Robyn Henderek; Sharon Hartzell; U.S. EPA Region 2

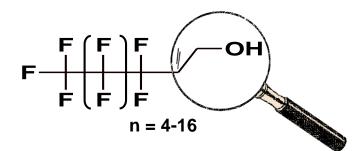
Kavitha Dasu, Ph.D.; Ramona Iery, Ph.D.; Amy Dindal, PMP; Battelle Memorial Institute

Disclaimer

• The findings and conclusions in this presentation have not been formally disseminated by the U.S. EPA and should not be construed to represent any agency determination or policy.


Outline


- What are PFAS?
- How are PFAS used?
- Where are they used?
- Production and transport
- Health effects and select U.S. regulatory activity
- Examination of treatment options
- What is solidification and stabilization
- Experimental background and methodology for studying sorbents for stabilization


What are PFAS?

Perfluorinated

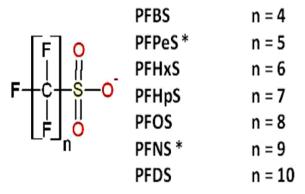
Polyfluorinated

Perfluorosulfonic Acids

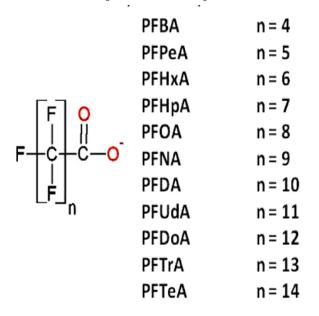
PFBS, PFHS, **PFOS**

Perfluoro<u>carboxylic Acids</u>

C₆ acid – C₁₂ acid **PFOA C8 acid**


<u>Fluorotelomer Alcohols</u> – produced chemical and manufacturing residual

6:2, 8:2 and 10:2



More Examples of PFAS

Perfluoroalkyl Sulfonates

Perfluoroalkyl Carboxylates

Fluorotelomer Sulfonates

Fluorotelomer Sulfonamides Amines

$$F = \begin{bmatrix} F \\ C \\ F \end{bmatrix} = \begin{bmatrix} O \\ NH \\ O \end{bmatrix}$$

$$HN^{+} = 6:2 \text{ FtSaAm} \qquad n = 6$$

$$8:2 \text{ FtSaAm} \qquad n = 8$$

Phosphate Esters
$$O P O P O$$

$$F F F F$$

$$F F F$$

$$n = 4,6,8$$

How are PFAS used?

Physical and chemical properties: Products include:

Oil and water repellence

 Thermal stability and temperature resistance

Friction reduction

 Coatings for textiles, paper, surfaces, and cookware

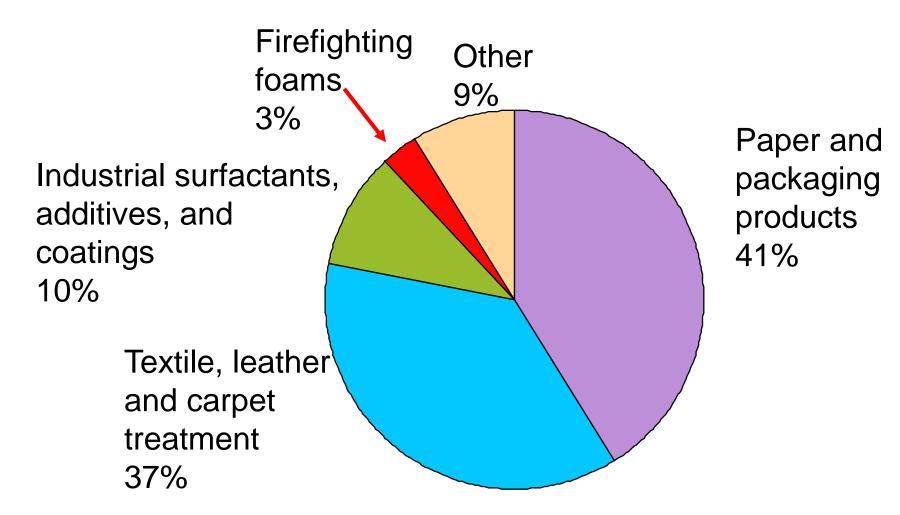
Thermal resistant plastics

Hydraulic fluids

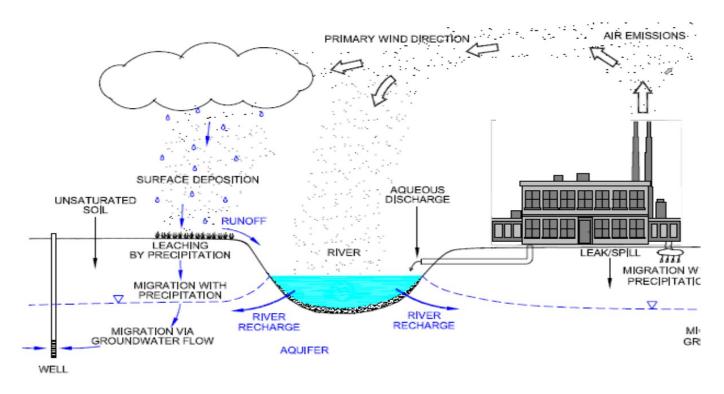
Where are PFAS used?

Manufacturing

- Primary manufacturing of PFAS products
- Secondary manufacturing and industrial use
 - Textiles and papers surface treatment to repel stains, oil, and water
 - Plastics coatings, resins, and flame retardants
 - Metal Plating and Etching corrosion prevention, mechanical wear prevention, fume suppressant, post-plating cleaner
 - Photolithography, semi-conductor photoresists, etchants, wetting agents
 - Aqueous Film Forming Foams fire suppression, fire training, flammable vapor suppression, and asphyxiation of diseased poultry CAFOs


Commercial and Consumer Use

- Textiles and paper products
- Hydraulic fluids
- Surface preparation agents cleaning agents, polishes, paints, varnishes, dyes, and inks
- Medical Products



PFOS Production in 2000 by 3 M

Transport in the environment

- Air and water discharges can carry PFAS contamination
- PFAS may deposit on soil and sediment which then become a source
- Previous remediation activities may affect transport at a site
- Mobility dependent on
 - Chain length
 - Geochemistry of water and soil and sediment, especially pH
 - Hydrology of the site

PFAS Health Effects

- PFOA and PFOS
 - Low birth weights for infants
 - Affects the immune and thyroid systems, cholesterol metabolism
 - Kidney and testicular cancer
- Other PFAS
 - Data gaps exist
 - Cross Agency Human Health/Toxicity work group gather information from literature and conduct studies
 - Other parts of U.S. Govt. (ATSDR) evaluating PFAS toxicity
 - Other nations (e.g., Australia) also evaluating PFAS toxicity

Levels of Concern

Selected Concentrations at Military Bases Sampled

Chemical	Ground Water/ Surface Water		Soil/Sediment (mg/kg)	
	US EPA	State X ^d	US EPA	State X ^d
PFOA	70 ng/L ^a	400 ng/L	1.26 ^c	1.6 to 0.0017
PFOS	70 ng/L ^a	400 ng/L	1.26 ^c	1.6 to 0.003
PFBS	380 μg/L ^b	-	1,600 b	-

a EPA 2016 "Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS)", EPA 2016 "Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA)"

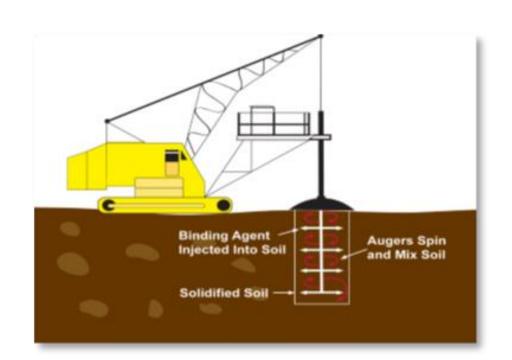
b EPA 2016 Regional Screening Level. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-may-2016

c EPA risk-based screening levels calculated using the EPA Regional Screening Level calculator at https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search . (US EPA, OLEM)

d State X. 2016.

Why Examine PFAS Treatment Options?

- The problem seems insurmountable!
 - Industrial societies have used PFAS compounds since the 1940s-50s
 - They don't degrade substantially when released into the environment
 - Health implications Prior slide on Levels of Concern
 - PFAS compounds are found in an ever increasing number of sites and media
- Treatment options
 - A number of treatment options have been suggested, but few are proven for use in the number of media found to be impacted
 - RO, activated carbon, and anion exchange resins are being used successfully to treat for PFAS in drinking water
 - Other media such as solids (soils and sediments) not studied thoroughly


PFAS Stabilization Literature Review

- Review of soil sorption technologies was conducted and published in The Military Engineer, Jan-Feb 2018 issue
- Literature review further indicated promise for the concept of binders to solidify PFAS in soil and sediment

Solidification/Stabilization Technology Application

- Solidification and stabilization (S/S) utilized at a number of Superfund contaminated sites since the program's inception
- Process where contaminated soil or sediment are 'contained' within a low-porosity matrix to reduce or eliminate leaching
- Immobilizes and encapsulates contaminants (does not destroy)
- Certain refuse materials from industrial processes can be 'beneficially reused' when concrete is used in the S/S process (e.g., fly ash)
- Low-porosity of treated, stabilized matrix keeps contaminants in the matrix and out of
 - Soils
 - Sediments
 - Surface water
 - Ground water



Experimental Approach for Testing Sorbents for S/S

Task 1

Task 1a Identify sorbents
Task 1b Sorbent Characterization

5 Sorbents plus control for initial screening

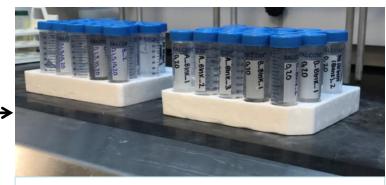
Task 2 (using PFAS mix)

Task 2a Sorbent Screening Kinetic study (5 sorbents plus Ottawa sand as control)
Task 2b Batch Sorption (1 sorbent)(out of 5 sorbents tested in Task 2a)

1 Sorbent selected for soil treatability study

Task 3 (using PFAS mix)

Task 3a Physico-chemical properties of 2 PFAS-contaminated field soils


Task 3b Soil-Sorbent Treatability Studies using SPLP protocol in 2 PFAS-contaminated field soils plus Ottawa sand control

Sorbent Screening Kinetics Study

5.0 mg: 50 mL sorbent to solution 0.01 M NaCl background electrolyte

Triplicates for all treatments including blanks and controls

Spike PFAS target analytes Initial conc. 500 µg L⁻¹

Analysis on LC-MS/MS

Sample dilution Surrogates & Internal standard spiked

Shaked at 125 rpm, 23±1°C and sampled over 0-20 d

Analytical Method and List of Six Native Analytes

- AB Sciex QTRAP 5500 Triple Quadrupole MS
- LC equipped with PEEK[™] tubing and solvent delay column
- Negative electrospray ionization mode with MRM
- Column: Kinetex 2.6 µm C18 100 A 50 x 4.6 mm
- Run time: 10 minutes
- Quantitation Method: Isotope Dilution
- Dark blue tested in kinetics studies

Native Analyte	Mass-labelled Surrogates	Internal Standards
PFBA	13C4-PFBA	13C3-PFBA
PFHxA	13C5-PFHxA	13C2-PFOA
PFOA	13C8-PFOA	13C2-PFOA
PFNA	13C9-PFNA	13C2-PFOA
PFBS	13C3-PFBS	13C4-PFOS
PFOS	13C8-PFOS	13C4-PFOS

Sorbent Screening Kinetics Testing

PFASs Tested

PFHxA

PFOA

PFNA

PFBS

PFOS

5 Selected Sorbents

Activated Carbon

Biochar

Fe amended biochar

Trade name mineral binder 1 (B1)

Trade name mineral binder 2 (B2)

* Ottawa sand control

Sorbent Screening Kinetics Testing

Tested equilibrium concentrations (Isotherm/Partitioning) for all 5 sorbents

- Prepared solution of all 5 PFASs
- Added equal amount of solution to each of the 5 sorbents
- Determined concentrations of 5 PFASs left in solution after set time periods (2 hrs to > 400 hrs)
- B2 equilibrated after 24 hrs
- Others equilibrated at 120 hrs (5 days)

Sorbent Screening Kinetics Testing

Sorbents performed differently among the 5 PFASs tested:

- Surface area (BET and micropore) or Pore volume do not fully elucidate results
- pH, surface charge, hydrophobicity or other physicochemical effects may help in understanding results
- Better understanding of performance characteristics needed

Sorbents	рН
Act. Carbon	6.2
Biochar	7.0
Fe-Biochar	4.6
B1	5.2
B2	5.2
Ottawa Sand	4.7

Next Steps

- Continue reviewing Laboratory Isotherm/Partitioning study results
- Select sorbent for use in solidifying/stabilizing (S/S) two contaminated site soils from PFAS-contaminated sites (EPA Region 2 and EPA Region 8)
- Conduct EPA Synthetic Precipitation Leaching Procedure (SPLP) on these two S/S soils
- Analyze all data and prepare final technical report summarizing results of the tested sorbents to stabilize PFAS-contaminated field soils.